ValleyOrtho Rehabilitation Playbook Series

Physician: Dr. Chris George
Office Phone: 970-384-7140

Physician Assistant: Rachel Mazza
Office Fax: 970-384-8133

MA: Michelle Gorton

ATC: Jackie Brey

Surgical Procedure: Meniscectomy

The intent of this information is to inform the treating clinician on the evidence-based considerations to be used as a guideline regarding the surgery noted above. This is not a substitute for appropriate clinical decision making, but a supplement to that effect. If at any time a clinician feels uncertain about a given phase discrepancy or patient presentation they are strongly encouraged to discuss this with the referring physician and his/her team.
${ }^{* * *}$ It is the responsibility of the therapist to read the operative report before providing care to the patient to improve treatment communication ${ }^{* * *}$.
Therapeutic Activity Progression Disclaimer: Progression to the next phase should be strongly based on meeting clinical criteria (not solely based on the post-operative timeframes) as appropriate and in collaboration with the referring surgeon. Exercise prescription should be clinically directed by pain and performance absent of detrimental movement patterns with respect to proper biomechanics of the spine, hip, knee and ankle.

Communication Recommendations from Therapist to Surgical

Team: When a treating therapist feels the need to reach out to Dr. George, or a member of his team, at any point for any reason they are strongly encouraged to do so. All concerns are not explicitly written and clinical judgement is paramount. Below is a handful of reasons and suggested methods of contact to promote communication:

Urgent Red Flag Communication: the patient is in clinic and an action is required as directed by referring staff office

- Uncontrollable and unremitting pain.
- Signs of infection at incision or treated limb.
- Severe palpation tenderness, swelling, tachycardia (UE or LE DVT).
- Labored breathing (PE).
- Drastic decline in ROM.
- After a fall/trauma, or near fall/trauma, resulting in a clinical change. Preferred Contact Method: Immediate phone call to speak with MA or ATC until answer.

Administrative Needs

- Rehabilitation Prescription needed or prescription change requests
- Appointment needed with the physician office, or medication refill

Preferred Contact Method: Phone call to MA/ATC
Other Patient Concerns During Clinic Hours M-TH 9-5pm F 9-3pm

- Abnormal pain, comorbidities or complications that may prevent attainment of established discharge criteria.
- Patient is noncompliant with rehabilitation process.
- Excessive muscle guarding/motion phobia after 1-2 outpatient visits.
- Adverse work or home practices negatively impacting recovery.
- Patient expresses discontent or concerns with the current POC
established by PT and/or by MD/PA
Preferred Contact Method: Phone call to MD \&/or PA

Preferred Updates before checkup visits with MD/PA

During Clinic Hours M-TH 9-5pm F 9-3pm

- Information regarding adherence/participation in rehabilitation process.
- Comments on progress and trends of the patient's rehab course.

Preferred Contact Method: Phone call to MD \&/or PA. Or Fax update

Phase 1: Edema, Quadriceps \& ROM Recovery (wks 0-2)

Goals:

- Initiate therapy \approx post-op day 4^{10}
- Minimize pain/swelling to decrease quad inhibition ${ }^{2,9}$
- Normalize quadriceps activation/control ${ }^{2,9}$
- Set baseline KOOS-pain/KOOS-Sport for RTS readiness ${ }^{1}$ (Appendix A)

Precautions/Restrictions:

- WB/Gait:
- WBAT 2,9,12, initial ambulation with bilateral crutches ${ }^{2,9}$
\square Wean patient from crutches $\neq \operatorname{limp}$ and pain as able ${ }^{2,9}$
- A/AA/PROM:
- Week 0-1 ROM 0-90 $0^{\circ 2,9}$ Then ROM progression as tolerated for full ROM by weeks 4-6 ${ }^{9}$
\square Emphasis should be towards terminal knee extension initially ${ }^{2,9}$
- Activity:
\square No impact training until week $4+^{9,11}$
Phase 1 Therapeutic Activities:
- Gait:
- Progression from bilateral crutches to single crutch to no AD as able
- ROM:
\square Manual \& self-management for flexibility, swelling and full ext², 9
\square Scar and patellar mobilizations on healed incisions ${ }^{9}$
\square Bike partial or full revolutions for ROM gains/maintenance ${ }^{2,9}$
- Strengthening:
\square Total lower extremity CKC and OKC strengthening/activities aimed avoid valgus collapse and promote core strength/pelvis control
through full knee ROM as tolerated ${ }^{2,9}$
Quad TKE focused activity ${ }^{2,9}$
\square NMES to quad with volitional contraction as needed ${ }^{2,9}$
- Balance:
- Proprioception with TKE control ${ }^{2,9,13}$

Minimum Criteria for Progression to Phase 2:

- AROM $0^{0}-90^{0_{2}}$
- 20 SLR \neq Quad Lag ${ }^{2,14}$

Phase 2: ROM \& Total LE Strengthening (wks 3-4)

Goals:

- Rehabilitation may progress aggressively because there is no anatomic structure that requires protection ${ }^{2,3,10}$ while concurrently controlling for effusion, pain and inflammation ${ }^{3}$
- Restore near full ROM 2,9
- Normalize gait without AD^{2}
- Improve muscle strength and endurance ${ }^{2}$
- Improve balance and proprioception ${ }^{2,9,13}$

Precautions:

- Activity:
\square Avoid impact training until weeks $4+^{9,12}$
\square Once single leg press is $\geq 75 \%$ LSI begin submax impact training with progressions as tolerated to full intensity impact activities ${ }^{9}$

Phase 2 Therapeutic Activities:

- Gait:
\square Ensure proper weight shifting over involved extremity
- ROM:
\square Manual \& self-management for flexibility, swelling for return to full ROM^{9}
\square Scar and patellar mobilizations on healed incisions ${ }^{9}$
- Strengthening:
\square Total lower extremity CKC and OKC strengthening/activities aimed avoid valgus collapse and promote core strength/pelvis control through full knee ROM as tolerated ${ }^{2,9}$
\square High-load progressive quad strengthening is indicated as tolerated to improve concentric muscle activation at $70-80 \% 1$ repetition max 7 10
\square Concentric knee extension strength is significantly delayed in long term recovery and therefore more focus on concentric high load training is indicated ${ }^{7}$
- Balance:
-Proprioception training progressions ${ }^{2,9,13}$
Criteria for Progression to Phase 3:
- Normal gait mechanics without AD
- 0-125 ${ }^{\circ}$ AROM

Phase 3: Total LE Strengthening \& Return to Activity (wks 5+)

Goals:

- Address remaining barriers to RTS via KOOS-pain/KOOS-sport ${ }^{1}$
- Optimize biomechanics at the hip, knee and ankle
- Increasing strength to support desired activity
- In prepubescent patients: focus primarily on form control and movement patterns instead of muscle hypertrophy as their bodies will not put on muscle growth as in more mature patients ${ }^{15}$
- Establish patient specific HEP relative to resources and goals.

Phase 3 Therapeutic Activities:

- ROM:
\square Manual \& self-management for gains in ROM, flexibility \& swelling
- Strengthening \& Activity; As Tolerated:
\square Running Progressions with proper swelling and pain control ${ }^{11}$Slow progressions of cutting/pivot \& decelerating intensity ${ }^{9}$Continue total lower extremity strengthening based on deficitsNeuromuscular training for proper landing mechanics is important as patient's alter jump landing mechanics to decrease quad use (forward anterior trunk lean with or without increased knee flexion) in involved knee up to 3 months after surgery despite = Quad LSI muscle testing ${ }^{6}$
- Balance:
\square Proprioception training progressions with variable surfaces and perturbations

Criteria for Progression to Return to Activity Testing:

- Patient reports confidence with hopping/jumping activities

Return to Activity Testing

Criteria for Return to Light Recreational Activity:

1. Full AROM and joint girth at $100 \% \mathrm{LSI}^{16,17}$
2. WB symmetry with squat form to $60^{0} 16,17$
3. Stork test at 90% LSI 16,17 (Appendix B)
4. Isometric leg press at 60° of knee flexion LSI $\geq 75 \%{ }^{16,17}$ (Appendix C)
5. Isometric quad and $\mathrm{HS} \mathrm{LSI} \geq 75 \%$ at 60° of flexion ${ }^{16,17}$ (Appendix D-E)
6. Anterior Reach $\leq 4 \mathrm{~cm}$ difference Vs uninvolved $\mathrm{LE}^{16,17}$ (Appendix F)
7. Single leg hop test LSI $\geq 70 \%{ }^{17}$ (Appendix G)

Criteria for Full Return to Recreational/Sport Activity:
 General Ortho Patient:

- Patient meets all return to light activity criteria in phase 3.
- Max single leg press LSI $\geq 90 \%{ }^{9,10}$

Recreational Athlete Sequence (includes above):

- Max Isometric Quad and HS LSI $\geq 90 \%{ }^{10}$ OKC at 60° of knee flexion.
- Single leg hop test and Crossover hop test ${ }^{27}$ for distance: LSI $\geq 90 \%{ }^{10}$

Competitive Athlete (includes above):

- Max single leg press $\mathrm{LSI} \geq 95 \%^{10}$
- Max Isometric Quad and HS LSI $\geq 95 \%{ }^{10}$ OKC at 60° of knee flexion
- Single Leg hop test for distance: $\mathrm{LSI} \geq 95 \%{ }^{10}$
- Side Hop test: LSI $\geq 90 \%{ }^{10}$ (Appendix G)
- Crossover hop test for distance $\geq 95 \%$ LSI 10,18 (Appendix I)

Other Literature Review Notes:

- Delayed / decreased outcomes with lateral vs medial partial meniscectomy ${ }^{1,3}$ potentially due to:
\square Lateral meniscus supports approximately 70% of the load transmission at Tibiofemoral joint ${ }^{1}$
\square Lateral meniscus undergoes $2 x$ anteroposterior translation that the medial meniscus does during knee flexion ${ }^{3,11}$
$\square \uparrow$ effusion prevalence with RTS in lateral vs medial meniscectomy ${ }^{11}$
- Female gender and increased OA before surgery are associated with a slower rate of recovery from arthroscopic partial mniscectomy ${ }^{5}$
- Quad weakness often persists at 6 months and is attributed to neural impairment (activation failure) in maximum concentric and isometric actions. Maximum quad eccentric action did not differ from uninvolved ${ }^{7}$ - Average self-reported timeline for return to sport at PLOF:
\square RTS <30 years old $=7.7 \mathrm{wks}^{12}$
\square RTS >30 years old $=12.7 \mathrm{wks}^{12}$

Abbreviation List:	MCL: Medial collateral ligament
AAROM: Active assisted range of motion MD: Medical doctor	
ABD: Abduction	NWB: Non weight bearing
AD: Assistive device	OKC: Open kinetic chain
ADL: Activity of daily Living	PA: Physician assistant
AROM: Active range of motion	PCL:Posterior cruciate ligament
BPTB: Bone patellar tendon bone	PE: Pulmonary embolism
BW: Body Weight	PLC: Posterior lateral corner
CKC: Closed kinetic chain	PROM: Passive range of motion
DVT: Deep vein thrombosis	ROM: Range of motion
ER: External rotation	RP: Resting position
EXT: Extension	RROM: Resisted range of motion
FWB: Full weight bearing	RTS: Return to sport
GHJ: Gleno-humeral joint	SLR: Straight leg raise
HEP: Home exercise program	UE: Upper extremity
HS: Hamstring	TKE: Terminal knee extension
IR: Internal rotation	WB: Weight bearing
LCL: Lateral collateral ligament	WBAT: Weight bearing as tolerated
LE: Lower extremity	\#: Pounds
MA: Medical assistant	\%: Absent/Without
LSI: Limb Symmetry Index =	\approx : Approximately
(involved leg \div uninvolved leg	\leq Less than or equal to
for a specific test)	\geq : Greater than or equal to

Return to Activity Test Descriptions:

Stork Balance Test ${ }^{19}$: (Appendix B for diagram)

- Hands on hips. NWB foot: medial distal femur or medial proximal tibia.
- Timer starts when the patient lifts heel of the stance foot off the ground.
- Timer stops if/when the patient removes hands from hips, NWB foot
from medial stance leg or the heel comes in contact with the ground.
Anterior Reach Test ${ }^{16,17}$: (Appendix F for diagram)
- Stand on one leg and slide a tissue box forward with the toes of the other foot by pushing on the side of the box. Goals is to push the box as far as possible and return back to the starting upright position.
- Once contact is lost between the toes and the box the slide is over.
- Perform 6 warm up attempts per leg to diminish learning effect.
- Failed attempt = the sliding foot touches down on the floor or on top of the slide box before returning back to the starting position. Cannot kick or flick box forwards.
- Distance is measured from toe of standing foot to back edge of the box. Take the best of 3 attempts for each leg.
Single Leg Hop Test for Distance ${ }^{20}$: (See Appendix D for diagram)
- Measure patient's standing height in cm for pass/fail.
- Hands clasped behind the back to prevent arm swing momentum. \square Arms can release for landing assistance after leaving ground.
- 4 progressive warm up jumps $\approx 25 \%, 50 \%, 75 \%$ and 100% intensity.
- Patient must "stick" the landing \neq significant knee valgus.
- Use the best of 3 maximum effort jump tests.
- Distance is measured from the toe at the start line to heel after landing.

Single Leg Timed Side Hop Test ${ }^{21}$: (See Appendix E for diagram)

- Set up: 2 parallel lines on floor, with outer edges of lines 40 cm apart.
- Start position: standing on single test leg with hands behind the back.
- Action: Patient hops from outside of one line to outside of the other.
- Record the total number of completed foot strikes in 30 seconds. \square Completed foot strikes = foot lands completely outside the line, without touching the line, while maintaining hand position.
Crossover Hop Test ${ }^{18}$: (See Appendix F for diagram)
- Patient starts on one leg with center line just lateral to stance leg.
- Patient is instructed to maximally hop forwards 3 times on the same.
stance leg, alternately crossing $a \approx 15 \mathrm{~cm}$ wide line.
- Distance is measured from toe of start line to heel of 3 rd landed hop.

Quick Reference Activity Timeline:

Activity	Restrictions to Activity Progressions
Weight Bearing / Gait	\bullet Immediately WBAT, wean from crutches without limp as able
Knee ROM	$\bullet 0-90^{\circ}$ Day 0-7 then progress flexion as tolerated
CKC Squats	\bullet As tolerated controlling for effusion, pain and inflammation
OKC RROM	\bullet As tolerated controlling for effusion, pain and inflammation
Plyometrics	$\bullet \approx$ Week 5 With leg press LSI $\geq 75 \%$, OK to begin double leg to single leg progressions with good valgus control \bullet Monitor process to avoid increased swelling/pain
Running	\bullet Minimum requirement for leg press $\geq 75 \%$ LSI \bullet It is preferable to meet all of the return to light recreational activity criteria on page 3 before running
Return to Sport Cleared by MD	\bullet Having met the return to activity testing criteria related to level of desired activity intensity on page 3 \bullet Typical return to activity timelines vary $\approx 6-16$ weeks, $9,11,12$

Appendix A: KOOS-pain/KOOS-sport

KOOS-Pain \& KOOS-Sport Knee Surveys

Scoring KOOS Tests:
Items are scored on a 0-4 scale. Compare scores from the time of surgery to the time of return to activity to determine if Minimal Clinically Important Difference (MCID) that shows significant positive trend of RTS has been met.

Scoring KOOS-Pain:

The MCID is 9.7 points improvement for KOOS-pain

Scoring KOOS-Sport:
The MCID is 14.7 points improvement for KOOS-sport ${ }^{1}$

Today's date: \qquad 1 \qquad 1 \qquad Date of birth: \qquad 1 \qquad 1 \qquad
Name: \qquad
INSTRUCTIONS: This survey asks for your view about your knee. Answer every question by ticking the appropriate box, only one box for each question. If you are unsure about how to answer a question, please give the best answer you can.|

PAIN:					
	Never	Monthly	Weekly	Daily	Always
1. How often do you experience pain?	\square	\square	\square	口	\square
What amount of knee pain have you experienced the last week during the following activities?					
	None	Mild	Moderate	Severe	Extreme
2. Twisting/pivoting on your knee.	\square	\square	\square	\square	\square
3. Straightening knee fully.	\square	\square	\square	\square	\square
4. Bending knee fully.	\square	\square	\square	\square	\square
5. Walking on flat surface.	\square	\square	\square	\square	\square
6. Going up or down stairs.	\square	\square	\square	\square	\square
7. At night while in bed.	\square	\square	\square	\square	\square
8. Sitting or lying.	\square	\square	\square	\square	\square
9. Standing upright.	\square	\square	\square	\square	\square
	Total Score 1-9:				

SPORT:

The following questions concern your physical function when being active on a higher level. The questions should be answered thinking of what degree of difficulty you have experienced during the last week due to your knee.

	None	Mild	Moderate	Severe	Extreme
1. Squatting.	\square	\square	\square	\square	\square
2. Running.	\square	\square	\square	\square	\square
3. Jumping.	\square	\square	\square	\square	\square
4. Twisting/Pivoting on your knee.	\square	\square	\square	\square	\square
5. Kneeling.	\square	\square	\square	\square	\square

Meniscus References:

1. Agarwalla, A. et al. Predictive factors and duration to return to sport after isolated meniscectomy. The Orthopaedic Journal of Sports Medicine. 2019: 7 (4).
2. Brigham and Women's Hospital, Inc. Department of Rehabilitation Services. Meniscal Repair. 2010. https://www.brighamandwomens.org/assets/bwh/patients-and-families/pdfs/knee--partial-meniscectomy-or-debridement.pdf
3. Brindle, T. et al. The meniscus: Review of Basic Principles with Application to Surgery and Rehabilitation. Journal of Athletic Training. 2001; 36(2): 160-169.
4. Ericsson, Y. et al. Muscle Strength, Functional Performance, and Self-Reported Outcomes Four Years After Arthroscopic Partial Meniscectomy in Middle-Aged Patients. Arthritis and Rheumatism. December 15 2006; 55(6): 946-952.
5. Fabricant, P. et al. Predictors of Short-term Recover Differ from Those of Long-term Outcomes After Arthroscopic Partial Meniscectomy. Arthroscopy. July 2008; 24(7): 769-778.
6. Ford, K et al. Landing Adaptations Following Isolated Lateral Meniscectomy in Athletes. Knee Surg Sports Traumatol Arthrosc. Oct 2011; 19(10): 1716-1721.
7. Glatthorn, J. et al. Neuromuscular Function after Arthroscopic Partial Meniscectomy. Clin Orthop Relat Res. 2010; 468: 1336-1343.
8. Goodyear-Smith, F. et al. Rehabilitation After Arthroscopic Meniscectomy: A Critical Review of the Clinical Trials. International Orthopaedics. 2001; 24: 350-353.
9. Gunderson Health System. Partial Meniscectomy / Chondroplasty Rehabilitation Program. July 2008. https://www.gundersenhealth.org/app/files/public/1474/Sports-Medicine-Protocol-Partial-Menisectomy-Chondroplasty.pdf
10. Koutras, G. et al. A Randomized Trial of Isokinetic Versus Isotonic Rehabilitation Program After Arthroscopic Meniscectomy. The International Journal of Sports Physical Therapy. Feb 2012; 7(1); 31-38.
11. Smoak, J. et al. An Up-to-Date Review of the Meniscus Literature: A Systematic Summary of Systematic Reviews and Meta-analyses Orthop J Sports Med. 2020 Sep 9; 8(9): 2325967120950306. doi: 10.1177/2325967120950306. eCollection 2020 Sep.
12. Kim, S. et al. Return to sport after arthroscopic meniscectomy in stable knees. BMC Sports Science, Medicine and Rehabilitation. 2013; 5(23).
13. Zhang, X. et al. Effects of Strength and Neuromuscular Training on Functional Performance in Athletes After Partial Medial Meniscectomy. Journal of Exercise Rehabilitation. 2017;13(1): 110-116.
14. Wright, R et al. Anterior Cruciate Ligament Reconstruction Rehabilitation: MOON Guidelines. Sports Health. 2015 May;7(3):239-43. doi: 10.1177/1941738113517855.
15. Ardern, C.L et al. 2018 International Olympic Committee consensus statement on prevention, diagnosis and management of pediatric anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc. 2018 Apr;26(4):989-1010. doi: 10.1007/s00167-018-4865-y. Epub 2018 Feb 17.
16. Gunderson Health System. Meniscus Repair Rehabilitation Program. November 2019. https://www.gundersenhealth.org/app/files/public/1473/Sports-Medicine-Protocol-Meniscus-Repair.pdf
17. Harput, G. et al. Postoperative rehabilitation and outcomes following arthroscopic isolated meniscus repairs: A systematic review. Physical Therapy in Sport. 2020 Sep;45:76-85. doi: 10.1016/j.ptsp.2020.06.011. Epub 2020 Jul 13
18. Munro, A et al. Between-Session Reliability of Four Hop Tests and the Agility T-Test. Journal of strength and conditioning research. May 2011; 25, (5): 1470-1477.
19. Schell, J et al. Physical Fitness Assessment in Exercise and Sports Science. 1994 2nd Ed, Leelar Biomedisience Services, Matraville, NSW. p. 327
20. Davies G.J et al. Individualizing the Return to Sports After Anterior Cruciate Ligament Reconstruction. Operative Techniques in Orthopaedics. 2017 Mar 27:1 70-78.
21. Gustavsson, A. et al. A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2006; 14: 778-788. DOI 10.1007/s00167-006-0045-6.

Valley Ortho

