ValleyOrtho Rehabilitation Playbook Series

Physician: Dr. Chris George
Office Phone: 970-384-7140

Physician Assistant: Rachel Mazza
Office Fax: 970-384-8133

MA: Michelle Gorton ATC: Jackie Brey

Surgical Procedure: Radial, Root \& Complex Meniscus Repair RED Playbook

The intent of this information is to inform the treating clinician on the evidence-based considerations to be used as a guideline regarding the surgery noted above. This is not a substitute for appropriate clinical decision making, but a supplement to that effect. If at any time a clinician feels uncertain about a given phase discrepancy or patient presentation they are strongly encouraged to discuss this with the referring physician and his/her team.
${ }^{* * *} I t$ is the responsibility of the therapist to read the operative report before providing care to the patient to improve treatment communication***.
Therapeutic Activity Progression Disclaimer: Progression to the next phase should be strongly based on meeting clinical criteria (not solely based on the post-operative timeframes) and in collaboration with the referring surgeon. Exercise prescription should be clinically directed by pain and performance absent of detrimental movement patterns with respect to proper biomechanics of the spine, hip, knee and ankle.

Communication Recommendations from Therapist to Surgical

Team: When a treating therapist feels the need to reach out to Dr. George, or a member of his team, at any point for any reason they are strongly encouraged to do so. All concerns are not explicitly written and clinical judgement is paramount. Below is a handful of reasons and suggested methods of contact to promote communication:

Urgent Red Flag Communication: the patient is in clinic and an action is required as directed by referring staff office

- Uncontrollable and unremitting pain.
- Signs of infection at incision or treated limb.
- Severe palpation tenderness, swelling, tachycardia (UE or LE DVT).
- Labored breathing (PE).
- Drastic decline in ROM.
- After a fall/trauma, or near fall/trauma, resulting in a clinical change.

Preferred Contact Method: Immediate phone call to speak with MA or ATC until answer.

Administrative Needs

- Rehabilitation Prescription needed or prescription change requests
- Appointment needed with the physician office, or medication refill

Preferred Contact Method: Phone call to MA/ATC

Other Patient Concerns During Clinic Hours M-TH 9-5pm F 9-3pm

- Abnormal pain, comorbidities or complications that may prevent attainment of established discharge criteria.
- Patient is noncompliant with rehabilitation process.
- Excessive muscle guarding/motion phobia after 1-2 outpatient visits.
- Adverse work or home practices negatively impacting recovery.
- Patient expresses discontent or concerns with the current POC established by PT and/or by MD/PA
Preferred Contact Method: Phone call to MD \&/or PA
Preferred Updates before checkup visits with MD/PA
During Clinic Hours M-TH 9-5pm F 9-3pm
- Information regarding adherence/participation in rehabilitation process.
- Comments on progress and trending nature of the patient's rehab
course.
Preferred Contact Method: Phone call to MD \&/or PA. Or Fax update

Phase 1: Edema, Quadriceps \& ROM Recovery (weeks 0 to 3)

Goals:

- Minimize pain/swelling to decrease quad inhibition ${ }^{13}$
- Normalize quadriceps activation/control ${ }^{13}$
- Set baseline KOOS-pain/KOOS-Sport for RTS readiness ${ }^{22}$ (Appendix A)

Precautions/Restrictions:

- WB/Gait:
\square Refer to Dr. George's physical therapy prescription for brace and WB status
- A/AA/PROM:
\square Refer to Dr. George's physical therapy prescription for OKC and CKC ROM restrictions
- Activity:
\square No isolated RROM HS for 6 weeks ${ }^{1,2}$
\square No pivot/twisting training until week 12^{2}
Phase 1 Therapeutic Activities:
- Gait:
- Practice ambulation on flat surfaces and stairs NWB in locked EXT brace with bilateral crutches
- ROM:
\square Manual \& self-management for flexibility, swelling and full ext ${ }^{2}$Scar mobilizations on healed incisions ${ }^{1}$
\square No stationary bike in this phase
- Strengthening:
- Quad TKE focused activity ${ }^{2,13}$
\square NMES to quad with volitional contraction as needed ${ }^{2,13}$
\square Consider blood flow restriction to deter atrophy ${ }^{2}$
Criteria for Progression to Phase 2:
- $0^{0} \mathrm{EXT}^{2}, \approx 80^{\circ}$ flexion
- 20 SLR \neq Quad Lag ${ }^{15}$

Phase 2: ROM, Quadriceps \& Gait Progressions (weeks 3 to 6)

Goals:

- Consistent swelling resolution despite activity increases
- Improved weight acceptance without pain at week 6

Precautions:

- WB/Gait:
\square Refer to Dr. George's physical therapy prescription for brace and WB status
©Adequate Quad Control Definition: patient can perform 20 SLR
\neq Quad Lag ${ }^{15}$ AND standing march \neq extension lag: Standing on
involved knee, without UE support, patient is able to perform 10
march repetitions of uninvolved hip maintaining full knee
extension on involved knee \neq lag 16
- A/AA/PROM:
\square Refer to Dr. George's physical therapy prescription for OKC and CKC ROM restrictions
- Activity:
- No isolated RROM HS for 6 weeks 2
\square No plyometrics in this phase ${ }^{1,2,8,13}$
\square Avoid pivot/twisting training until week 12^{2}

Phase 2 Therapeutic Activities with Respect to WB/ROM Status:

- Gait:
\square Ensure proper weight shifting over involved extremity with appropriate assistance based pain and quad control
- ROM:
\square Manual \& self-management for flexibility, swelling
\square Stationary bike without resistance at week 4^{1}
- Strengthening:
\square Total LE strengthening/activities aimed avoid valgus collapse and promote core strength/pelvis control ${ }^{2}$
\square Continue quad focused activity ${ }^{2,13}$
\square Double leg Mini squats $<90^{\circ 1}$
- Balance:
\square Proprioception training progressions within precautions ${ }^{1}$

Criteria for Progression to Phase 3:

- Pain free full weight bearing on involved LE
- 0-90́ AROM

Phase 3: Total LE Strengthening \& Balance (weeks 6 to 12)

Goals:

- Full flexion ROM by week 12
- In prepubescent patients: focus primarily on form control and movement patterns instead of muscle hypertrophy as their bodies will not put on muscle growth as in more mature patients ${ }^{16}$

Precautions:

- Avoid pivot/twisting training until week 12^{2}
- ROM:
\square Refer to Dr. George's physical therapy prescription for OKC and CKC ROM restrictions

Phase 3 Therapeutic Activities:

- Gait:
\square Continue progression from bilateral crutches to single crutch \neq limp, D/C single crutch with adequate quad control
- ROM:
\square Manual \& self-management for gains in ROM, flexibility \& swelling
- Strengthening \& Activity:
\square Progressions of Total LE CKC \& OKC 0-90 ${ }^{\circ}$ strengthening aimed avoid valgus collapse and promote core strength/pelvis control ${ }^{2}$
\square Stationary bike as tolerated
- Balance:
\square Proprioception training progressions with variable surfaces and perturbations
Criteria for Phase $4 \&$ Running Initiation at Week 12^{8} :

1. Full AROM without swelling ${ }^{2,3}$
2. WB symmetry with squat form to 60^{02}
3. Stork test ${ }^{2}$ at 75% LSI (Appendix B)
4. Isometric leg press at 60° of knee flexion $\mathrm{LSI} \geq 75 \%^{2,3}$ (Appendix C)
5. Isometric quad and $\mathrm{HS} \mathrm{LSI} \geq 75 \%$ at 60° of flexion ${ }^{2,3}$ (Appendix D-E)
6. Anterior Reach $\leq 4 \mathrm{~cm}$ difference Vs uninvolved $\mathrm{LE}^{2,3}$ (Appendix F)
7. Single leg hop test LSI $\geq 70 \%{ }^{17}$ (Appendix G)

Phase 4: Single Leg Strength \& Plyometrics (weeks 12+)

Goals:

- Increasing strength to support desired activity
- Optimize biomechanics at the hip, knee and ankle
- Address remaining barriers to RTS via KOOS-pain/KOOS-sport²2
- Establish patient specific HEP relative to resources and goals.
- Post activity soreness resolves within 24 hours 12

Precautions:

- No squats past $\approx 90^{\circ}$ until week 16^{2}
- Ensure proper limb biomechanics with activity progressions to optimize force distribution across tibiofemoral joint

Phase 4 Therapeutic Activities:

- Begin sport specific drills/patterns at 50% effort ${ }^{15}$
- Double leg to single leg plyometric progressions without valgus ${ }^{12,15}$
- Ladder drills and progressive agility at 50-75\% effort as tolerated ${ }^{15}$
- High level balance training
- Slow progressions of cutting/pivot \& decelerating intensity as tolerated
- Continue total lower extremity strengthening based on remaining deficits

Criteria for Progression to Return to Activity Testing:

- No complaints with functional or exercise tasks
- Reports confidence with all running and jumping tasks
- Return to activity timelines vary by repair type and are based on
achieving clinical criteria with return to activity testing:
\square Typical return $\approx 20-24$ weeks $^{3}, 6,811$

Progression Note:

- Clinical outcomes were not affected by age, chronicity of injury, sex or concurrent ACL^{10}
- If comorbidities create unattainable goals for discharge, discuss this with the treating physician group.

Criteria for Return to Recreational Activity:

General Ortho Patient:

- Patient meets all return to running criteria in phase 3.
- Max single leg press $\mathrm{LSI} \geq 90 \%{ }^{6,10,11,19}$

Recreational Athlete Sequence (includes above):

- Max Isometric Quad and HS LSI $\geq 90 \%{ }^{18} \mathrm{OKC}$ at 60° of knee flexion.
- Single leg hop test and Crossover hop test ${ }^{21}$ for distance: LSI $\geq 90 \%{ }^{18}$

Competitive Athlete (includes above):

- Max single leg press $\mathrm{LSI} \geq 95 \%^{18}$
- Max Isometric Quad and HS LSI $\geq 95 \%{ }^{18}$ OKC at 60° of knee flexion
- Single Leg hop test for distance: LSI $\geq 95 \%{ }^{18}$
- Side Hop test: LSI $\geq 90 \%{ }^{19}$ (Appendix H)
- Crossover hop test for distance $\geq 95 \% \operatorname{LSI}^{18,21}$ (Appendix I)

Abbreviation List:	MCL: Medial collateral ligament
AAROM: Active assisted range of motion MD: Medical doctor	
ABD: Abduction	NWB: Non weight bearing
AD: Assistive device	OKC: Open kinetic chain
ADL: Activity of daily Living	PA: Physician assistant
AROM: Active range of motion	PCL:Posterior cruciate ligament
BPTB: Bone patellar tendon bone	PE: Pulmonary embolism
BW: Body Weight	PLC: Posterior lateral corner
CKC: Closed kinetic chain	PROM: Passive range of motion
DVT: Deep vein thrombosis	ROM: Range of motion
ER: External rotation	RP: Resting position
EXT: Extension	RROM: Resisted range of motion
FWB: Full weight bearing	RTS: Return to sport/activity
GHJ: Gleno-humeral joint	SLR: Straight leg raise
HEP: Home exercise program	UE: Upper extremity
HS: Hamstring	TKE: Terminal knee extension
IR: Internal rotation	WB: Weight bearing
LCL: Lateral collateral ligament	WBAT: Weight bearing as tolerated
LE: Lower extremity	\#: Pounds
MA: Medical assistant	\#: Absent/Without
LSI: Limb Symmetry Index =	\approx Approximately
(Average score of the involved leg	\leq Less than or equal to
divided by the score of the	\geq : Greater than or equal to

Return to Activity Test Descriptions:

Stork Balance Test ${ }^{20}$: (Appendix B for diagram)

- Hands on hips. NWB foot: medial distal femur or medial proximal tibia.
- Timer starts when the patient lifts heel of the stance foot off the ground.
- Timer stops if/when the patient removes hands from hips, NWB foot
from medial stance leg or the heel comes in contact with the ground.
Anterior Reach Test ${ }^{2,3}$: (Appendix F for diagram)
- Stand on one leg and slide a tissue box forward with the toes of the other foot by pushing on the side of the box. Goals is to push the box as far as possible and return back to the starting upright position.
- Once contact is lost between the toes and the box the slide is over.
- Failed attempt = the sliding foot touches down on the floor or on top of the slide box before returning back to the starting position. Cannot kick or flick box forwards.
- Distance is measured from toe of standing foot to back edge of the box. Take the best of 3 completed attempts for each leg (Stop Test attempts after

Single Leg Hop Test for Distance ${ }^{18}$: (See Appendix D for diagram)

- Measure patient's standing height in cm for pass/fail.
- Hands on hips to prevent arm swing momentum.
\square Arms can release for landing assistance after leaving the ground.
- 4 progressive warm up jumps $\approx 25 \%, 50 \%, 75 \%$ and 100% intensity.
- Patient must "stick" the landing \neq significant knee valgus.
- Use the best of 3 maximum effort jump tests.
- Distance is measured from toe of start line to shortest distanced heel.

Single Leg Timed Side Hop Test ${ }^{19}$: (See Appendix H for diagram)

- Set up: 2 parallel lines on floor, with outer edges of lines 40 cm apart.
- Start position: standing on single test leg with hands on hips.
- Action: Patient hops from outside of one line to outside of the other.
- Record the total number of completed foot strikes in 30 seconds. \square Completed foot strikes $=$ foot lands completely outside the line, without touching the line, while maintaining hand position.
Crossover Hop Test ${ }^{21}$: (See Appendix I for diagram)
- Patient starts on one leg with center line just lateral to stance leg.
- Patient is instructed to maximally hop forwards 3 times on the same. stance leg, alternately crossing $a \approx 15 \mathrm{~cm}$ wide line.
- Distance is measured from toe of start line to heel of $3^{\text {rd }}$ landed hop.

Appendix A： KOOS－pain／KOOS－sport

KOOS－Pain \＆KOOS－Sport Knee Surveys

Scoring KOOS Tests：
Items are scored on a 0－4 scale． Compare scores from the time of surgery to the time of return to activity to see if Minimal Clinically Important Difference （MCID）that shows a significant positive trend of RTS is near being met．

Scoring KOOS－Pain：

The MCID is 9.7 points improvement for KOOS－pain ${ }^{22}$

Scoring KOOS－Sport：
The MCID is 14.7 points improvement for KOOS－sport ${ }^{22}$

Today＇s date： \qquad 1 \qquad I \qquad Date of birth： \qquad 1 \qquad 1 \qquad
Name： \qquad
INSTRUCTIONS：This survey asks for your view about your knee．Answer every question by ticking the appropriate box，only one box for each question．If you are unsure about how to answer a question，please give the best answer you can．｜

PAIN：					
	Never	Monthly	Weekly	Daily	Always
1．How often do you experience pain？	\square	\square	口	口	\square
What amount of knee pain have you experienced the last week during the following activities？					
	None	Mild	Moderate	Severe	Extreme
2．Twisting／pivoting on your knee．	\square	口	\square	\square	\square
3．Straightening knee fully．	\square	\square	\square	\square	\square
4．Bending knee fully．	\square	\square	\square	\square	\square
5．Walking on flat surface．	\square	\square	\square	\square	\square
6．Going up or down stairs．	\square	\square	\square	\square	\square
7．At night while in bed．	\square	\square	\square	\square	\square
8．Sitting or lying．	\square	\square	\square	\square	\square
9．Standing upright．	\square	\square	\square	\square	\square
Total Score 1－9：					

SPORT：

The following questions concern your physical function when being active on a higher level．The questions should be answered thinking of what degree of difficulty you have experienced during the last week due to your knee．

	None	Mild	Moderate	Severe	Extreme
1．Squatting．	\square	\square	\square	\square	\square
2．Running．	\square	\square	\square	\square	\square
3．Jumping．	\square	\square	\square	\square	\square
4．Twisting／Pivoting on your knee．	\square	\square	\square	\square	\square
5．Kneeling．	\square	\square	\square	\square	\square
Total Score 1－5：					

Meniscus References:

1. Brigham and Women's Hospital, Inc. Department of Rehabilitation Services. Meniscal Repair. 2007.
https://www.brighamandwomens.org/assets/bwh/patients-and-families/rehabilitation-services/pdfs/knee-meniscal-repair-protocol-bwh.pdf
2. Gunderson Health System. Meniscus Repair Rehabilitation Program. November 2019.
https://www.gundersenhealth.org/app/files/public/1473/Sports-Medicine-Protocol-Meniscus-Repair.pdf
3. Harput, G. et al. Postoperative rehabilitation and outcomes following arthroscopic isolated meniscus repairs: A systematic review. Physical Therapy in Sport. 2020 Sep;45:76-85. doi: 10.1016/j.ptsp.2020.06.011. Epub 2020 Jul 13
4. Hupperich, A. et al. What are the factors to affect outcome and healing of meniscus bucket handle tears? Archives of Orthopaedic and Trauma Surgery. 2018 Oct;138(10):1365-1373. doi: 10.1007/s00402-018-2989-7. Epub 2018 Jun 29.
5. Kedgley, A. et al. Predicting meniscal tear stability across knee-joint flexion using finite-element analysis Knee Surg Sports Traumatol Arthrosc. 2019 Jan;27(1):206-214. doi: 10.1007/s00167-018-5090-4. Epub 2018 Aug 10.
6. Lucas, G. et al. Isolated meniscal injuries in paediatric patients: outcomes after arthroscopic repair. Orthop Traumatol Surg Res. 2015 Apr;101(2):173-7. doi: 10.1016/j.otsr.2014.12.006. Epub 2015 Feb 9.
7. McCulloch, P. et al. Does simulated walking cause gapping of meniscal repairs? J Exp Orthop. 2016 Dec;3(1):11. doi: 10.1186/s40634-016-0047-3. Epub 2016 Mar 15.
8. O'Donnell, K. et al. Rehabilitation Protocols After Isolated Meniscal Repair: A Systematic Review. Am J Sports Med. 2017 Jun;45(7):16871697. doi: 10.1177/0363546516667578. Epub 2016 Oct 7.
9. Perkins, B. et al. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. Knee Surg Sports Traumatol Arthrosc. 2018 Aug;26(8):2245-2250. doi: 10.1007/s00167-017-46659. Epub 2017 Aug 16.
10. Smoak, J. et al. An Up-to-Date Review of the Meniscus Literature: A Systematic Summary of Systematic Reviews and Meta-analyses Orthop J Sports Med. 2020 Sep 9; 8(9): 2325967120950306. doi: 10.1177/2325967120950306. eCollection 2020 Sep.
11.Spang, R. et al. Rehabilitation following meniscal repair: a systematic review BMJ Open Sport Exerc Med. 2018 Apr 9;4(1):e000212. doi: 10.1136/bmjsem-2016-000212. eCollection 2018.
11. University of Wisconsin Sports Medicine. Rehabilitation Guidelines for Meniscal Repair. November 2017. https://www.uwhealth.org/files/uwhealth/docs/pdf/SM14890_Meniscus_Repair8.pdf.
12. Wilk, K. et al. Rehabilitation principles of the anterior cruciate ligament reconstructed knee twelve steps for successful progression and return to play. Clin Sports Med. 36 (2017) 189-232.
13. Liotta, F. Expert Opinion and Consultation.
14. Wright, R et al. Anterior Cruciate Ligament Reconstruction Rehabilitation: MOON Guidelines. Sports Health. 2015 May;7(3):239-43. doi: 10.1177/1941738113517855.
15. Ardern, C.L et al. 2018 International Olympic Committee consensus statement on prevention, diagnosis and management of pediatric anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc. 2018 Apr;26(4):989-1010. doi: 10.1007/s00167-018-4865-y. Epub 2018 Feb 17.
16. Rambaud, A et al. Criteria for return to running after anterior cruciate ligament reconstruction: a scoping review. Br J Sports Med. 2018 Nov;52(22):1437-1444. doi: 10.1136/bjsports-2017-098602. Epub 2018 May 2.
17. Davies G.J et al. Individualizing the Return to Sports After Anterior Cruciate Ligament Reconstruction. Operative Techniques in Orthopaedics. 2017 Mar 27:1 70-78.
18. Gustavsson, A. et al. A test battery for evaluating hop performance in patients with an $A C L$ injury and patients who have undergone $A C L$ reconstruction. Knee Surg Sports Traumatol Arthrosc. 2006; 14: 778-788. DOI 10.1007/s00167-006-0045-6.
20.Schell, J et al. Physical Fitness Assessment in Exercise and Sports Science. 1994 2nd Ed, Leelar Biomediscience Services, Matraville, NSW. p. 327
21.Munro, A et al. Between-Session Reliability of Four Hop Tests and the Agility T-Test. Journal of strength and conditioning research. May 2011; 25, (5): 1470-1477.
19. Agarwalla, A. et al. Predictive factors and duration to return to sport after isolated meniscectomy. The Orthopaedic Journal of Sports Medicine. 2019: 7 (4).

Valley Ortho

